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The conductance of a dilute 2D electron gas on hydrogen is measured as a function of ambient ‘He
gas density. At densities below =10%° cm ~3 the electron scattering rate is the sum of a classical term
linear in *He density plus a *He-adsorbate-scattering term. Towards higher densities, however, the con-
ductivity decreases exponentially which we attribute to strong localization of electrons below a threshold
energy E. X ksT. We present an estimate of E. based on weak-localization theory and find good agree-
ment with both our 2D data and the 3D mobility measurements in the literature. In 3D, the Ioffe-Regel

criterion for localization is found to be k/p=2.5%0.5.

PACS numbers: 73.20.Fz, 71.55.Jv

Electrons in dense “He gas represent an almost ideal
system in which to study transport in a highly disordered
media. Helium provides a short-range, well character-
ized localization potential whose fluctuations can easily
exceed the average kinetic energy of the electrons.! The
idea of one’s using helium to reach this strongly disor-
dered limit is not new and several elegant experiments
have been performed showing substantial deviations
from classical transport.2™* These results have not, how-
ever, spurred much interest in the general solid-state
community. One reason for this, we believe, is that there
has been no clear quantitative connection made between
the observed nonclassical transport properties of elec-
trons in helium and what is known about transport in
disordered metallic and semiconducting systems.®> With
the recent development of quantum localization theory,®
it has now become possible to interpret electron transport
in helium in more universal terms. In this Letter, we re-
port a systematic investigation of the conductivity of a
dilute two-dimensional electron gas on a solid hydrogen
substrate as a function of ambient “He gas density. We
analyze our data using the first-order single-electron
weak-localization corrections to the conductivity and find
evidence for a density-dependent strong-localization
threshold that dominates the conductivity at high densi-
ties.

The interaction of very low-energy electrons with heli-
um gas is well characterized by an effective optical
scattering potential AVo=(#%/m,)2rnAnza, where a=6
x10 72 nm is the electron-helium scattering length and
Ang represents the density fluctuations in the gas.? In a
nearly ideal gas like “*He the density fluctuations are well
known and in Born approximation®’ the 3D scattering
rate is
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In Eq. (2) (2), the average extent of the electron wave
function above the H, surface,® is =1.7 nm and in both
equations B, the second virial coefficient of “He gas,
takes into account the slight deviations of “He from the
ideal gas behavior. At low “He densities the above clas-
sical scattering rates are proportional to n; and one ob-
tains the expected n, ' density dependences for both the
mobility puo=ero/m, and conductivity oo =noe >ro/me..

We have measured the conductivity and mobility for
2D electrons in dense “He gas with essentially the same
experimental arrangement as first employed by Sommer
and Tanner.>® Hydrogen crystals were formed on a
0.25-mm-thick sapphire disk onto which electrons were
deposited. The coupling of the two-dimensional electron
gas (2DEG) to a capacitive detector was measured by
standard lock-in techniques, and the electron mobility g,
and conductivity o, were determined by our applying a
magnetic field, B, perpendicular to the surface and
measuring the Drude resistivity, o '(B)=0""[l
+ (uB)?] where o0 =09 and pu=p¢ in the classical pic-
ture.
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FIG. 1. Resistivity and inverse mobility of the 2DEG as
y y

functions of *He gas density n,. Dashed lines are the slopes
predicted with use of Eq. (2).
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Shown in Fig. 1 is the resistivity o ~! of the 2DEG as
a function of gas density at 4.2 K. The electron density
no=10% cm ~? was determined from the classical formu-
la no=oo/euo at the zero-gas-density limit. The small
curvature near zero density represents scattering from
the first “He submonolayer which is filled at n,=2x10"?
cm 2. As the *He density is further increased the gas-
atom scattering begins to dominate and the conductivity
becomes less sensitive to the surface interactions. The
dashed line in Fig. 1 is the predicted slope from Eq. (2).
Note the large deviation from linearity at densities
ng>10% cm ™3 where the resistivity increases quickly
and electrons become strongly localized. Similar behav-
ior has been observed for 2DEG’s on helium*'®'!" and on
neon,'? but no quantitative characterization of the data
has been presented in these previous studies. In this
work we have also determined the electron mobility from
magnetoresistance at several *He densities and the in-
verse mobility, u ~!, is plotted in the inset in Fig. 1. For
comparison the dashed line is the classical prediction of
Eq. (2). As in the case of o', the measured u ~! is
larger than the classical value; however, the difference is
only about a factor of 2 at our highest densities and some
of it is due to the surface scattering. This seems to indi-
cate that the effective carrier density n.g=o/eu rather
than mobility u vanishes in the strong-localization re-
gime.

Levine and Sanders? were the first to observe large de-
viations from Eq. (1) in a nondegenerate 3D electron
gas. They measured the electron mobility with a time-
of-flight technique at 7=4 K and observed orders-of-
magnitude lower mobilities than predicted by Eq. (1).
They interpreted their observations as being evidence for
the formation of an electron bubble state in the gas
analogous to that observed in liquid “He. Later, Eggar-
ter and Cohen'? developed a microscopic model of elec-
tron transport in helium where the anomalously low mo-
bility was attributed to the formation of localized states.
Though their percolation theory predated modern locali-
zation theory by some ten years, they were able to ex-
plain the data adequately using only two adjustable pa-
rameters. To the casual reader, however, the theory,
which is based on several subtle and untestable assump-
tions, is not particularly transparent nor does it give a
closed form to the density dependence of the mobility.
Furthermore, the theory is limited to 3D transport and is
hard to extend into 2D since it does not include the
effects of inelastic scattering. In 2D inelastic effects are
particularly important since all the single-electron eigen-
states are localized at T =0 and finite-temperature con-
ductivity appears through inelastic processes.

Equations (1) and (2) are lowest-order scattering re-
sults for plane-wave eigenstates and are not valid when
the potential fluctuations exceed the electron kinetic en-
ergy E = kgT.'* For sufficiently strong fluctuations the
interference between multiple-scattering events has to be
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taken into account. This is done by weak-localization
theory, which predicts strong deviations from the classi-
cal results when A/7oZ kgT (kwlo<1; ku, is thermal
wave vector and /o the classical mean free path of the
electron) and 7,> 79 where 7, is the dephasing time.
We have previously studied weak-localization effects for
electrons on a bare H; surface and found, for example,
the negative magnetoresistance peak predicted by this
theory.® On the basis of Eq. (2) we estimate that for our
2D electrons, A/to=kpT at n,=10?%/cm?, in agreement
with the deviations observed in Fig. 1. The A/79>>kpT
(klp~1) regime (i.e., strong-localization regime) has
remained inaccessible in photon-localization experi-
ments'®> and has not been systematically studied in de-
generate electron systems where correlation effects are
important. It is readily apparent from Eqgs. (1) and (2)
and Fig. 1 that helium gas provides a tunable and calcul-
able random potential whose fluctuations can exceed the
kinetic energy of the electrons at experimentally accessi-
ble densities.

In the presence of disorder, an electron’s diffusivity is
attenuated by coherent backscattering. To lowest order
in (klo) ™! the correction to the diffusivity in 3D is given

byl()
. 1/2
) o
Ty

where « is an integration parameter of order 1. The 2D
correction'” is

D(E)=

2E1g 3a
3m,

pE)=E

me

1
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For 7,>> 19, Eqs. (3) and (4) predict a low diffusivity for
electrons with k/o==1 so that one should be careful to ex-
clude carriers with k=<1/5 ! when calculating free-
electron transport properties. For simplicity, we have
neglected higher-order terms in (klo) ~' as well as the
possibility that /o, 79, and 7z, can be energy dependent
beyond the first-order estimates of Egs. (1) and (2). We
have extrapolated the diffusivity to the limit D(E.) =0
using Egs. (1)-(4) and then calculated the conductivity
by integrating D(E) over the Boltzmann distribution
f(E), o=f¢DE)n(E)f(E)AE. When we take D(E)
to be zero for E < E. and n(E) to be the free-electron
density of states we get for both the 2D and 3D cases
o=ooexp(—E./kgT), where

o 28zthlatn [ ()" )
R 1 — 5
me(1+2ang) Ty
and
ED = 3zh 2azln(‘ra,/‘ro)ng )
¢ 4m(z2)(1+2B3n,)

Notice that EPan? but EPon,. Strictly speaking
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FIG. 2. The normalized conductivity (mobility) times densi-
ty ng as functions of ng. The squares are the author’s 2D data.
The triangles are the 3D data from Ref. 4. The solid lines are
best fits by Egs. (5) and (6).

there is no mobility threshold in 2D at 7 =0 since all the
electron eigenstates are localized. At finite temperature,
however, effective threshold appears when the localiza-
tion length, /L oc =/oexp(kl/y) becomes less than the in-
elastic scattering length. Our model implicitly assumes
in a statistical sense that the conductivity decrease is due
to a vanishing number of mobile electrons neg=ng
xexp(—E./kgT) in the E > E, tail of the Boltzmann
distribution. We argue without rigorous proof that the
nonvanishing mobility 4 in Fig. 1, measured from the
magnetoresistance, represents the average mobility of the
electrons above the threshold E.. This is to be contrast-
ed with the typical time-of-flight measurements used to
obtain 3D mobilities. In these experiments a time-
averaged mobility is obtained which is essentially the
average mobility of all the electrons over the whole
Boltzmann distribution. Basically a single electron un-
dergoes, during its flight time, many inelastic collisions
probing the whole energy scale with a Boltzmann
weighting factor. Therefore in 3D the measured mobili-
ty, u =uoexp(E2P/kgT), is analogous to our conductivi-
ty measurements.

We have tested the above ideas in Fig. 2 by plotting on
a semilogarithmic scale both ngo/eng for our 2D data
and ngu for the 3D data from Ref. 4, as functions of
density n,. Both of these data sets deviate strongly from
the classical predictions of ngo and ngu, which are in-
dependent of n,. Moreover, even though the 2D and 3D
density ranges do not entirely overlap,'® we believe that
there is clear dimensionality signature in these results.
The solid lines in Fig. 2 are the best fits of the formulas
o=coexp(—E?°/kgT) and u=poexp(—E;"/kgT)
with use of Egs. (5) and (6) for E.. In the 3D case,
70/74==(me/Mye) /? is small and thus the cutoff parame-
ter a is the only adjustable parameter. With a reason-
able value of a =1.5 we get a good fit to the data, com-
parable to those obtained by Eggarter and Cohen. In the
2D data the deviations at small gas densities are due to
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FIG. 3. The normalized conductivity times n, as a function
of ng for electrons on “He from Ref. 3. The solid line is the
best fit by Eq. (6) with {z)u.=7.6 nm.

the additional surface scattering, which is not included in
the present theory. The best value of 7, obtained from
the 2D fit is less than the 3D inelastic time =(My./
m.) 270 but is in good agreement with values obtained
from our low-field magnetoresistance measurements®'®
at ng = 5%x10%° cm 73, We believe that the increased 2D
dephasing was due to the configuration dephasing of “He
atoms moving perpendicular to the surface.

Since EZP is proportional to {z) ~! it is a useful test of
the theory to fit conductivity measurements on helium
where (z)ye=4.5(z)y,. Shown in Fig. 3 are the data of
Sommer and Tanner>2° for electrons on bulk helium.
Again, the classical density dependence has been fac-
tored out and the temperature dependence of B has
been included. Note that the anomalous low-n, behavior
is not present in these data as there is very little surface
scattering. We obtain a very good fit with In(z,/
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FIG. 4. The 3D fitting parameter a as a function of temper-
ature from best fits to the data of Refs. 4 (circles), 21 (trian-
gles), and 22 (square). The dashed line is a guide to the eye.
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79) ==5.6. This value agrees favorably with that in Fig. 2
since one expects that configurational dephasing due to
the perpendicular motion of the helium atoms may be
less for larger (z). We conclude that the *He and H,
data are consistent with the (z) dependence of Eq. (6).

We have also fitted 3D electron mobility data of other
authors,?"?2 at various temperatures between 4 and 77
K. Shown in Fig. 4 are the values of « obtained from the
fits as functions of temperature. The small positive slope
of a is not understood but may, in part, result from the
momentum dependence of B;. At higher temperatures,
the thermal wave vector of the electrons is larger and the
k dependence of the “He pair-correlation function has to
be taken into account, which is out of the scope of the
present investigation.

In conclusion, we have measured the conductivity of
2D electrons in helium gas from which we have extracted
a density-dependent conduction threshold, E.. We
present a model in which E, is estimated by means of the
weak-localization corrections to the conductivity and ob-
tain very good one-parameter fits to both our data and
the data of various authors with EP«n, and EPecnl.

The authors wish to thank Dr. V. Elser, Dr. J. Jack-
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